We present a secure multiparty quantum computation (MPQC) for computing greatest common divisor (GCD) based on quantum multiparty private set union (PSU) by Liu, Yang, and Li. As the first step, we improve the security of the MPQC protocol for computing least common multiple (LCM) by Liu and Li by constructing an efficient exact quantum period-finding algorithm (EQPA) as a subroutine instead of the standard (probabilistic) Shor's quantum period-finding algorithm (QPA). The use of EQPA instead of the standard QPA guarantees the correctness of the protocol without repetitions. The improvement of LCM protocol also improves the private set union protocol which is based on computing LCM. Finally, using the same idea of the PSU protocol, we construct a quantum multiparty private set intersection (PSI) by transforming the PSI problem into the problem of computing GCD. Performance analysis shows that the correctness and the unconditional security in the semihonest model are guaranteed directly from the correctness and the security of the subroutine protocols (LCM and PSU protocols). Moreover, we show that the complexity of the proposed protocols is polynomial in the size of the secret inputs and the number of parties.
翻译:我们提出了一种安全的多方量子计算(MPQC),用于基于Liu, Yang和Li的量子多方私有集合并(PSU)计算最大公约数(GCD)。首先,我们通过构建一个有效的精确量子周期查找算法(EQPA)作为子例程,而不是标准(概率性)Shor's量子周期查找算法(QPA),来提高Liu和Li计算最小公倍数(LCM)的MPQC协议的安全性。使用EQPA代替标准的QPA可以保证协议的正确性而不需要重复。LCM协议的改进也改进了基于计算LCM的私有集合并协议。最后,利用PSU协议的相同思路,我们通过将PSI问题转化为计算GCD问题,构造了量子多方私有集合交集(PSI)。性能分析表明,所提出的协议的正确性和正直模型下的无条件安全性可直接从子例程协议(LCM和PSU协议)的正确性和安全性中得到保证。此外,我们证明了所提出的协议的复杂度在秘密输入的大小和参与方的数量方面都是多项式的。