We consider a scalable user-centric cell-free massive MIMO network with distributed remote radio units (RUs), enabling macrodiversity and joint processing. Due to the limited uplink (UL) pilot dimension, multiuser interference in the UL pilot transmission phase makes channel estimation a non-trivial problem. We make use of two types of UL pilot signals, sounding reference signal (SRS) and demodulation reference signal (DMRS) pilots, for the estimation of the channel subspace and its instantaneous realization, respectively. The SRS pilots are transmitted over multiple time slots and resource blocks according to a Latin squares based hopping scheme, which aims at averaging out the interference of different SRS co-pilot users. We propose a robust principle component analysis approach for channel subspace estimation from the SRS signal samples, employed at the RUs for each associated user. The estimated subspace is further used at the RUs for DMRS pilot decontamination and instantaneous channel estimation. We provide numerical simulations to compare the system performance using our subspace and channel estimation scheme with the cases of ideal partial subspace/channel knowledge and pilot matching channel estimation. The results show that a system with a properly designed SRS pilot hopping scheme can closely approximate the performance of a genie-aided system.
翻译:我们考虑的是可扩缩的以用户为中心的无细胞大型MIMO网络,它配有分布式遥控无线电单位(RUs),能够进行宏观多样性和联合处理。由于有限上链(UL)试验层面,UL试验传输阶段的多用户干预使频道估计成为一个非三角问题。我们使用两种类型的UL试验信号,即探测参考信号(SRS)和降压参考信号(DMRS)试验,分别用来估计频道子空间及其即时实现情况。SRS试点通过多个时间档和资源区,按照拉丁方位选择计划传送,目的是平均消除不同SRS联合试点用户的干扰。我们提议了一种强有力的原则组成部分分析方法,用于SRS信号样本的频道子空间估计,每个相关用户都使用了SRS信号样本。估计的子空间在RUS用于DRS实验性净化和即时频道估计中进一步使用。我们提供了数字模拟,以便利用我们的次空间和频道估计计划将系统性能与理想的子空间/气流知识/气波理论和试测频道计划进行对比。我们提出的业绩显示SRA系统与精确的试测算系统。