Transformers have demonstrated remarkable performance in natural language processing and computer vision. However, existing vision Transformers struggle to learn from limited medical data and are unable to generalize on diverse medical image tasks. To tackle these challenges, we present MedFormer, a data-scalable Transformer designed for generalizable 3D medical image segmentation. Our approach incorporates three key elements: a desirable inductive bias, hierarchical modeling with linear-complexity attention, and multi-scale feature fusion that integrates spatial and semantic information globally. MedFormer can learn across tiny- to large-scale data without pre-training. Comprehensive experiments demonstrate MedFormer's potential as a versatile segmentation backbone, outperforming CNNs and vision Transformers on seven public datasets covering multiple modalities (e.g., CT and MRI) and various medical targets (e.g., healthy organs, diseased tissues, and tumors). We provide public access to our models and evaluation pipeline, offering solid baselines and unbiased comparisons to advance a wide range of downstream clinical applications.


翻译:Transformer在自然语言处理和计算机视觉领域展示了出色的性能。然而,现有的视觉Transformer很难从有限的医学数据中学习,并且无法在多样化的医学图像任务上泛化。为了解决这些挑战,我们提出了MedFormer,这是一个设计用于通用的3D医学图像分割的可扩展Transformer。我们的方法包括三个关键元素:所需的归纳偏置、具有线性复杂度注意力的分层模型和多尺度特征融合,可以全局地整合空间和语义信息。MedFormer可以在没有预训练的情况下跨越小到大的数据进行学习。全面的实验表明,MedFormer作为通用的分割骨干网具有潜力,优于CNN和视觉Transformer在覆盖多种模态(例如CT和MRI)和各种医学目标(例如健康器官、疾病组织和肿瘤)的七个公共数据集上。我们提供了公共的模型和评估流程,为推进各种临床应用提供了坚实的基础和无偏的比较。

0
下载
关闭预览

相关内容

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。它包含以下两个相对独立的研究方向:医学成像系统(medical imaging system)和医学图像处理(medical image processing)。前者是指图像行成的过程,包括对成像机理、成像设备、成像系统分析等问题的研究;后者是指对已经获得的图像作进一步的处理,其目的是或者是使原来不够清晰的图像复原,或者是为了突出图像中的某些特征信息,或者是对图像做模式分类等等。
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月22日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
27+阅读 · 2021年11月11日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关VIP内容
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员