Researchers are expected to keep up with an immense literature, yet often find it prohibitively time-consuming to do so. This paper explores how intelligent agents can help scaffold in-situ information seeking across scientific papers. Specifically, we present Scim, an AI-augmented reading interface designed to help researchers skim papers by automatically identifying, classifying, and highlighting salient sentences, organized into rhetorical facets rooted in common information needs. Using Scim as a design probe, we explore the benefits and drawbacks of imperfect AI assistance within an augmented reading interface. We found researchers used Scim in several different ways: from reading primarily in the `highlight browser' (side panel) to making multiple passes through the paper with different facets activated (e.g., focusing solely on objective and novelty in their first pass). From our study, we identify six key design recommendations and avenues for future research in augmented reading interfaces.
翻译:研究人员预计将与大量文献保持同步, 但往往发现这样做花费的时间太长。 本文探讨了智能剂如何帮助脚手在现场收集跨科学论文的信息。 具体地说, 我们介绍Scim, 是一个AI的强化阅读界面, 目的是通过自动识别、分类和突出突出的句子来帮助研究人员在论文上进行脱节, 形成基于共同信息需要的花言巧语。 我们用Scim作为设计探测器, 我们探索在强化阅读界面中不完善的AI协助的利弊。 我们发现研究人员使用Scim有几种不同的方式: 从主要在“ 亮光浏览器” (侧面板) 中阅读到以不同侧面( 例如, 仅关注第一关头的客观和新颖之处) 通过纸进行多次传递。 我们从我们的研究中确定了六条关键的设计建议和今后在增强阅读界面中开展研究的途径 。