The existence of adversarial examples poses a real danger when deep neural networks are deployed in the real world. The go-to strategy to quantify this vulnerability is to evaluate the model against specific attack algorithms. This approach is however inherently limited, as it says little about the robustness of the model against more powerful attacks not included in the evaluation. We develop a unified mathematical framework to describe relaxation-based robustness certification methods, which go beyond adversary-specific robustness evaluation and instead provide provable robustness guarantees against attacks by any adversary. We discuss the fundamental limitations posed by single-neuron relaxations and show how the recent ``k-ReLU'' multi-neuron relaxation framework of Singh et al. (2019) obtains tighter correlation-aware activation bounds by leveraging additional relational constraints among groups of neurons. Specifically, we show how additional pre-activation bounds can be mapped to corresponding post-activation bounds and how they can in turn be used to obtain tighter robustness certificates. We also present an intuitive way to visualize different relaxation-based certification methods. By approximating multiple non-linearities jointly instead of separately, the k-ReLU method is able to bypass the convex barrier imposed by single neuron relaxations.


翻译:在现实世界部署深心神经网络时,对抗性实例的存在构成了真正的危险。量化这种脆弱性的战略是评估具体攻击算法的模式。然而,这一方法具有内在的局限性,因为它没有说明模型对评价中没有包括的较强攻击的力度。我们开发了一个统一的数学框架来描述基于放松的稳健性认证方法,这些方法超越了对对手特有的稳健性评估,而是提供了对任何对手攻击的可证实的稳健性保障。我们讨论了单中子放松所构成的基本限制,并展示了Singh 等人(2019年)最近“k-RELU”多中度放松框架如何通过利用神经群体之间的额外关系限制而获得更紧密的对应感应感应引爆线。具体地说,我们展示了如何将更多的抗振前约束线用于相应的激活后约束线,以及如何反过来利用它们来获得较严格的稳健性证明。我们还介绍了一种直观的方法来直视不同基于放松的验证方法。通过对多种非线性统制的神经回旋法,而不是单独采用单一的神经稳定法。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
38+阅读 · 2020年3月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员