Several observations indicate the existence of a latent hyperbolic space behind real networks that makes their structure very intuitive in the sense that the probability for a connection is decreasing with the hyperbolic distance between the nodes. A remarkable network model generating random graphs along this line is the popularity-similarity optimisation (PSO) model, offering a scale-free degree distribution, high clustering and the small world property at the same time. These results provide a strong motivation for the development of hyperbolic embedding algorithms, that tackle the problem of finding the optimal hyperbolic coordinates of the nodes based on the network structure. A very promising recent approach for hyperbolic embedding is provided by the noncentered minimum curvilinear embedding (ncMCE) method, belonging to the family of coalescent embedding algorithms. This approach offers a high quality embedding at a low running time. In the present work we propose a further optimisation of the angular coordinates in this framework that seems to reduce the logarithmic loss and increase the greedy routing score of the embedding compared to the original version, thereby adding an extra improvement to the quality of the inferred hyperbolic coordinates.
翻译:几个观察显示,在真实网络背后存在着潜在的双曲空间,使得它们的结构非常直观,因为连接的概率随着节点之间的双曲距离而下降。沿这条线生成随机图的一个引人注目的网络模型是广度-相似优化模式(PSO),同时提供无比例分布、高集群和小世界属性。这些结果为发展超曲嵌入算法提供了强大的动力,这种算法解决了找到基于网络结构的节点最佳双曲坐标的问题。最近一种非常有希望的超曲嵌入方法是由非cent最小曲线嵌入法(ncMCE)提供,属于日落嵌入算法的组合。这一方法在低运行时间提供了高质量的嵌入。在目前的工作中,我们建议进一步优化这个框架中的角坐标,以降低对数损失,并增加嵌入点与原始版本相比的贪婪轮廓分数,从而给顶层嵌入的模型质量增添了额外的协调。