Having numerous potential applications and great impact, end-to-end speech translation (ST) has long been treated as an independent task, failing to fully draw strength from the rapid advances of its sibling - text machine translation (MT). With text and audio inputs represented differently, the modality gap has rendered MT data and its end-to-end models incompatible with their ST counterparts. In observation of this obstacle, we propose to bridge this representation gap with Chimera. By projecting audio and text features to a common semantic representation, Chimera unifies MT and ST tasks and boosts the performance on ST benchmarks, MuST-C and Augmented Librispeech, to a new state-of-the-art. Specifically, Chimera obtains 27.1 BLEU on MuST-C EN-DE, improving the SOTA by a +1.9 BLEU margin. Further experimental analyses demonstrate that the shared semantic space indeed conveys common knowledge between these two tasks and thus paves a new way for augmenting training resources across modalities. Code, data, and resources are available at https://github.com/Glaciohound/Chimera-ST.


翻译:由于存在着许多潜在的应用和巨大的影响,终端到终端语音翻译长期以来一直被视为一项独立的任务,未能从Sibling-文字机翻译的快速进展中充分汲取力量。由于文本和音频投入的表达方式不同,模式差距使得MT数据及其端到终端模型与ST对口单位不相容。我们建议与Chimera弥合这一代表差距。通过将音频和文字特征投射到共同语义代表中,Chimera使MT和ST任务统一化,并将ST基准、Must-C和增强Librispeech的绩效提升到新的艺术状态。具体地说,Chimera获得了关于 MuST-C EN-DE的27.1 BLEU,通过+1.9 BLEU差幅改进SOTA。进一步的实验分析表明,共享的语义空间确实在这两项任务之间传递了共同的知识,从而铺平了增加各种模式培训资源的一条新途径。https://githubera.com/GhimCLaound。

0
下载
关闭预览

相关内容

【ACL2020】端到端语音翻译的课程预训练
专知会员服务
5+阅读 · 2020年7月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员