We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lov{\'a}sz--Schrijver SDP operator $\text{LS}_+$, with a particular focus on a search for relatively small graphs with high $\text{LS}_+$-rank (the least number of iterations of the $\text{LS}_+$ operator on the fractional stable set polytope to compute the stable set polytope). In particular, we provide families of graphs whose $\text{LS}_+$-rank is asymptotically a linear function of its number of vertices, which is the least possible up to improvements in the constant factor (previous best result in this direction, from 1999, yielded graphs whose $\text{LS}_+$-rank only grew with the square root of the number of vertices). We also provide several new $\text{LS}_+$-minimal graphs, most notably a $12$-vertex graph with $\text{LS}_+$-rank $4$, and study the properties of a vertex-stretching operation that appears to be promising in generating $\text{LS}_+$-minimal graphs.
翻译:我们研究固定的图集的升降和项目级别,这些图集与Lov_'a}sz-Schrijver SDP 操作员$\ text{LS<unk> $,特别侧重于搜索相对小的图集,其值为$text{LS<unk> $(在分数稳定的多功能中,$text{LS<unk> $最少的迭代数,以计算稳定的多功能。特别是,我们提供一些图表的家属,其值为$text{LS<unk> $-ink 的直线函数,这在恒定因素的改进方面是最少的(从1999年起,这一方向的最初最佳结果是$text{LS<unk> $仅随顶部数的平方根增长)。 我们还提供了数种新的$text{LS<unk> $-minal图形,其中最明显的是12美元的顶端图,其值为$\text{LS<unk> }zrank$4$,研究一个有希望的图像的运行量为$LS+xx$的正数。</s>