We develop a new method that improves the efficiency of equation-by-equation algorithms for solving polynomial systems. Our method is based on a novel geometric construction, and reduces the total number of homotopy paths that must be numerically continued. These improvements may be applied to the basic algorithms of numerical algebraic geometry in the settings of both projective and multiprojective varieties. Our computational experiments demonstrate significant savings obtained on several benchmark systems. We also present an extended case study on maximum likelihood estimation for rank-constrained symmetric $n\times n$ matrices, in which multiprojective $u$-generation allows us to complete the list of ML degrees for $n\le 6.$
翻译:我们开发了一种新的方法来提高解决多面体系统的方程对等算算法效率。 我们的方法基于创新的几何构造,并减少了必须数字持续的同质式路径的总数。 这些改进可以适用于投影和多投影品种环境中数值代数几何学的基本算法。 我们的计算实验表明,在若干基准系统上节省了大量资金。 我们还提出了关于受等级限制的对称 $n/timens n$$$$ 矩阵的最大可能性估计的扩大案例研究,其中多投影的美元发电使我们能够完成6美元最低升度清单。