We propose a new paradigm to help Large Language Models (LLMs) generate more accurate factual knowledge without retrieving from an external corpus, called RECITation-augmented gEneration (RECITE). Different from retrieval-augmented language models that retrieve relevant documents before generating the outputs, given an input, RECITE first recites one or several relevant passages from LLMs' own memory via sampling, and then produces the final answers. We show that RECITE is a powerful paradigm for knowledge-intensive NLP tasks. Specifically, we show that by utilizing recitation as the intermediate step, a recite-and-answer scheme can achieve new state-of-the-art performance in various closed-book question answering (CBQA) tasks. In experiments, we verify the effectiveness of RECITE on three pre-trained models (PaLM, UL2, and OPT) and three CBQA tasks (Natural Questions, TriviaQA, and HotpotQA).
翻译:我们提出了一个新的范式,以帮助大语言模型(LLMs)产生更准确的事实知识,而无需从外部外源获取,称为RECITation-Angeled gEnergation(REGITE ) 。 不同于检索强化语言模型(RECITE ), 该模型在产生产出之前检索相关文件,根据一个投入,RETET首先从LLMs自己的记忆中通过抽样读取一个或几个相关段落,然后提出最后答案。 我们显示RECTE是知识密集型NLP任务的一个强有力的范例。 具体地说,我们通过将回引作为中间步骤,我们表明在各种非公开问题解答(CBQA)任务中,一个读和答方案可以实现新的最新业绩。 在实验中,我们核查RECTTE在三个预培训模式(PALM、UL2和IAL)和CBAM任务(Natalal Ques、TriviaQA和HotpotQA)上的有效性。