In explainable machine learning, local post-hoc explanation algorithms and inherently interpretable models are often seen as competing approaches. In this work, we offer a partial reconciliation between these two approaches by showing that Shapley Values correspond to Generalized Additive Models (GAMs). We introduce $n$-Shapley Values, a parametric family of local post-hoc explanation algorithms that explain individual predictions with interaction terms up to order $n$. By varying the parameter $n$, these explanations cover the entire range from Shapley Values up to a uniquely determined decomposition of the function that we attempt to explain. The relationship between $n$-Shapley Values and this decomposition offers a functionally-grounded characterization of Shapley Values, and highlights the limitations of these explanations. We then show that $n$-Shapley Values recover GAMs with interaction terms up to order $n$, which implies that the original Shapely Values recover GAMs without interaction terms. Taken together, our results offer a precise characterization of Shapley Values as they are being used in explainable machine learning. Python code to estimate $n$-Shapley Values and replicate the results in this paper is available at \url{https://github.com/tml-tuebingen/nshap}.


翻译:在可解释的机器学习中,本地的热后解释算法和内在可解释模型往往被视为相互竞争的方法。在这项工作中,我们通过显示Shapley值与通用Additive模型(GAMs)相对应来对这两种方法进行部分调和。我们引入了$-Shapley 值,这是一个本地的热后解释算法的参数组,用来解释单个预测,互动术语最高为美元。通过将参数值差异化,这些解释涵盖从Shaply值到我们试图解释的独一确定的函数分解。美元-Shapley值和这种分解组合之间的关系提供了基于功能的Shapley 值特征,突出了这些解释的局限性。我们然后显示,美元-Shaply 值回收了单个预测,互动术语最高为$,这意味着原始的精度值在没有互动术语下恢复 GAMs。加Ms。我们的结果加起来提供了对Shapley $/apply 值精确的描述,因为它们正在被用于可解释的机器的Spreplusimal as palal resual。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员