Temporal Neural Networks (TNNs) are spiking neural networks that exhibit brain-like sensory processing with high energy efficiency. This work presents the ongoing research towards developing a custom design framework for designing efficient application-specific TNN-based Neuromorphic Sensory Processing Units (NSPUs). This paper examines previous works on NSPU designs for UCR time-series clustering and MNIST image classification applications. Current ideas for a custom design framework and tools that enable efficient software-to-hardware design flow for rapid design space exploration of application-specific NSPUs while leveraging EDA tools to obtain post-layout netlist and power-performance-area (PPA) metrics are described. Future research directions are also outlined.
翻译:这项工作展示了正在进行的研究,目的是为设计高效应用专用TNN的神经感应处理器设计定制设计框架;本文件审查了以前为UCR时间序列集群和MNIST图像分类应用而设计NSPU设计的工作;目前关于定制设计框架和工具的想法,这些设计框架和工具能够高效的软件到硬件设计流程,用于迅速设计具体应用的NSPU的空间探索,同时利用EDA工具获取部署后网络列表和功率领域指标;还概述了今后的研究方向。