Supervised and unsupervised deep trackers that rely on deep learning technologies are popular in recent years. Yet, they demand high computational complexity and a high memory cost. A green unsupervised single-object tracker, called GUSOT, that aims at object tracking for long videos under a resource-constrained environment is proposed in this work. Built upon a baseline tracker, UHP-SOT++, which works well for short-term tracking, GUSOT contains two additional new modules: 1) lost object recovery, and 2) color-saliency-based shape proposal. They help resolve the tracking loss problem and offer a more flexible object proposal, respectively. Thus, they enable GUSOT to achieve higher tracking accuracy in the long run. We conduct experiments on the large-scale dataset LaSOT with long video sequences, and show that GUSOT offers a lightweight high-performance tracking solution that finds applications in mobile and edge computing platforms.
翻译:近年来,依赖深层学习技术的受监督和不受监督的深层跟踪器很受欢迎。然而,它们要求高计算复杂度和高记忆成本。在这项工作中,提出了名为GUSOT(GUSOT)的绿色且不受监督的单一对象跟踪器,其目的是在资源受限制的环境中对长视频进行天体跟踪。在基准跟踪器UHP-SOT++(UHP-SOT++(对短期跟踪非常有效)的基础上,GUSOT(GUSOT)包含另外两个新模块:1) 丢失的物体回收,2) 颜色智能化形状建议。它们分别帮助跟踪损失问题并提供更灵活的对象建议。因此,它们使GUSOT(GUSOT)能够长期实现更高的跟踪准确性。我们用长视频序列对大型数据集LASOT(LASOT)进行实验,并表明GUSOT(LOT)提供了一种轻量的高效高性跟踪解决方案,在移动和边缘计算平台上找到应用程序。