Image restoration under adverse weather conditions has been of significant interest for various computer vision applications. Recent successful methods rely on the current progress in deep neural network architectural designs (e.g., with vision transformers). Motivated by the recent progress achieved with state-of-the-art conditional generative models, we present a novel patch-based image restoration algorithm based on denoising diffusion probabilistic models. Our patch-based diffusion modeling approach enables size-agnostic image restoration by using a guided denoising process with smoothed noise estimates across overlapping patches during inference. We empirically evaluate our model on benchmark datasets for image desnowing, combined deraining and dehazing, and raindrop removal. We demonstrate our approach to achieve state-of-the-art performances on both weather-specific and multi-weather image restoration, and qualitatively show strong generalization to real-world test images.
翻译:在不利天气条件下恢复图像是各种计算机视觉应用的重大兴趣所在。最近的成功方法依赖于深神经网络建筑设计(例如,使用视觉变压器)目前的进展。由于最近以最先进的有条件基因化模型取得的进展,我们提出了基于分流扩散概率模型的新颖的基于补丁的图像恢复算法。我们的基于补丁的传播模型方法通过在推断期间使用一个有指导的分流过程,对重叠的补丁进行平滑的噪音估计,使大小不可知的图像得以恢复。我们实证地评估了我们关于图像脱落、混合脱水和脱水以及雨水清除的基准数据集模型。我们展示了我们实现特定天气和多天气图像恢复方面最先进的表现的方法,并从质量上展示了真实世界测试图像的有力概貌。