Since radiology reports needed for clinical practice and research are written and stored in free-text narrations, extraction of relative information for further analysis is difficult. In these circumstances, natural language processing (NLP) techniques can facilitate automatic information extraction and transformation of free-text formats to structured data. In recent years, deep learning (DL)-based models have been adapted for NLP experiments with promising results. Despite the significant potential of DL models based on artificial neural networks (ANN) and convolutional neural networks (CNN), the models face some limitations to implement in clinical practice. Transformers, another new DL architecture, have been increasingly applied to improve the process. Therefore, in this study, we propose a transformer-based fine-grained named entity recognition (NER) architecture for clinical information extraction. We collected 88 abdominopelvic sonography reports in free-text formats and annotated them based on our developed information schema. The text-to-text transfer transformer model (T5) and Scifive, a pre-trained domain-specific adaptation of the T5 model, were applied for fine-tuning to extract entities and relations and transform the input into a structured format. Our transformer-based model in this study outperformed previously applied approaches such as ANN and CNN models based on ROUGE-1, ROUGE-2, ROUGE-L, and BLEU scores of 0.816, 0.668, 0.528, and 0.743, respectively, while providing an interpretable structured report.
翻译:由于临床实践和研究所需的放射学报告是书面的,并储存在自由文本说明中,因此很难提取用于进一步分析的相对信息,在这种情况下,自然语言处理技术可以促进自动信息提取和将自由文本格式转换为结构化数据;近年来,基于深层次学习(DL)的模型已经适应了全国临床实践和研究实验,并取得了有希望的成果;尽管基于人工神经网络(ANN)和动态神经网络(CNN)的DL模型具有巨大的潜力,但这些模型在临床实践中仍面临一些限制;变异器(另一个新的DL结构)越来越多地用于改进这一进程;因此,在本研究中,我们提议为临床信息提取而采用基于变异器的精细刻名称实体识别(NER)结构;我们以自由文本格式收集了88个bdominovic的传声学报告,并根据我们开发的信息模型图案加以说明;文本对文本转换转换变异器模型(T5和Sci5),对T5、新的DL结构化模型进行了预先培训,这是另一个新的DL结构化结构化结构化模型(RGEO),同时对结构化了我们结构化的RGEOEU的模型进行了精化模型和结构式格式,对结构式变异式的模型进行了应用,对结构式的模型进行了精化,对结构模型进行了精化,对结构式B进行了升级,对结构式的模型进行了升级,对结构式的RGEOEOU的模型进行了升级,并分别进行了改造,对结构式B进行了改进了结构式版本,对结构式对结构式的模型和B进行了改进了结构化,对结构式的模型进行了升级,对结构式的模型,对结构式的模型和BFEUFEU关系和B进行了改进了结构式的模型进行了改进了结构式的模型,对结构式的模型,对结构式的模型进行了改造,对结构式的模型,对结构化,对结构式的模型进行了改进了BFEUFEUFEOUFEU进行了进行了结构式的模型和升级,对结构式的模型和升级,对结构式的升级,对结构式的模型进行了调整,对结构式对结构式的模型进行了改进了结构式的升级,对结构式,对B进行了改进了B