In the orthogonal range reporting problem we must pre-process a set $P$ of multi-dimensional points, so that for any axis-parallel query rectangle $q$ all points from $q\cap P$ can be reported efficiently. In this paper we study the query complexity of multi-dimensional orthogonal range reporting in the pointer machine model. We present a data structure that answers four-dimensional orthogonal range reporting queries in almost-optimal time $O(\log n\log\log n + k)$ and uses $O(n\log^4 n)$ space, where $n$ is the number of points in $P$ and $k$ is the number of points in $q\cap P$ . This is the first data structure with nearly-linear space usage that achieves almost-optimal query time in 4d. This result can be immediately generalized to $d\ge 4$ dimensions: we show that there is a data structure supporting $d$-dimensional range reporting queries in time $O(\log^{d-3} n\log\log n+k)$ for any constant $d\ge 4$.
翻译:在正方位范围报告问题中,我们必须预先处理一套多维点数的一套美元,这样对于任何轴-平行查询矩形的美元方格,就可以有效地报告美元P$的所有点数。在本文中,我们研究了指针机器模型中多维或方位范围报告的查询复杂性。我们提出了一个数据结构,在几乎最理想的时间里解答四维或方位范围的查询 $O (\log n\log\log\log n+ k),并使用美元(n\log4 n) 的空间,其中美元是美元方格数,美元方格数是美元方位数,美元方位数是美元方位数,美元方位数是美元方位数。这是使用近线性空间的首个数据结构,在4d中几乎达到最佳的查询时间。结果可以立即普遍化为 $dge 4 维维:我们显示一个数据结构支持美元方位($O\log_3美元) n\log\log\\\ k) 任何恒 $D4美元的报告查询。