Artificial neural networks can learn complex, salient data features to achieve a given task. On the opposite end of the spectrum, mathematically grounded methods such as topological data analysis allow users to design analysis pipelines fully aware of data constraints and symmetries. We introduce a class of persistence-based neural network layers. Persistence-based layers allow the users to easily inject knowledge about symmetries (equivariance) respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
翻译:人工神经网络可以学习复杂、突出的数据特征,以完成特定任务。在频谱的相反端,基于数学基础的方法,如地形数据分析,使用户能够设计分析管道,充分了解数据限制和对称性。我们引入了一类基于持久性的神经网络层。基于持久性的层使用户能够轻松地输入数据尊重的对称(等)知识,拥有可学习的重量,并可以由最新神经结构构成。