We discuss Bayesian inference for a known-mean Gaussian model with a compound symmetric variance-covariance matrix. Since the space of such matrices is a linear subspace of that of positive definite matrices, we utilize the methods of Pisano (2022) to decompose the usual Wishart conjugate prior and derive a closed-form, three-parameter, bivariate conjugate prior distribution for the compound-symmetric half-precision matrix. The off-diagonal entry is found to have a non-central Kummer-Beta distribution conditioned on the diagonal, which is shown to have a gamma distribution generalized with Gauss's hypergeometric function. Such considerations yield a treatment of maximum a posteriori estimation for such matrices in Gaussian settings, including the Bayesian evidence and flexibility penalty attributable to Rougier and Priebe (2019). We also demonstrate how the prior may be utilized to naturally test for the positivity of a common within-class correlation in a random-intercept model using two data-driven examples.
翻译:我们用一个复合对称差异变量矩阵来讨论一种已知偏差高斯模型的巴伊西亚推论。由于这种矩阵的空间是正确定矩阵的线性子空间,我们使用Pisano (2022年) 的方法在Gausian 环境中对通常的Wishart conjugate 进行分解,并得出一个闭式、三参数、双差共和先前分配的复合对称半偏差矩阵。在对角条目中,发现非中Kummer-Beta分布条件与Gauss 的超几何函数普遍分布。这些考虑产生了一种对高斯 环境的这种矩阵的最大事后估计,包括由Rougier 和Priebe (2019年) 造成的Bayes证据和灵活性处罚。我们还用两个数据驱动的例子表明,前一种方法如何用于自然测试随机取样模型中一种常见的等级内相关性。