Facial expression recognition plays an important role in human-computer interaction. In this paper, we propose the Coarse-to-Fine Cascaded network with Smooth Predicting (CFC-SP) to improve the performance of facial expression recognition. CFC-SP contains two core components, namely Coarse-to-Fine Cascaded networks (CFC) and Smooth Predicting (SP). For CFC, it first groups several similar emotions to form a rough category, and then employs a network to conduct a coarse but accurate classification. Later, an additional network for these grouped emotions is further used to obtain fine-grained predictions. For SP, it improves the recognition capability of the model by capturing both universal and unique expression features. To be specific, the universal features denote the general characteristic of facial emotions within a period and the unique features denote the specific characteristic at this moment. Experiments on Aff-Wild2 show the effectiveness of the proposed CFSP. We achieved 3rd place in the Expression Classification Challenge of the 3rd Competition on Affective Behavior Analysis in-the-wild. The code will be released at https://github.com/BR-IDL/PaddleViT.


翻译:在本文件中,我们提议建立具有平滑预测功能的Coarse-fine连锁网络(CFC-SP),以提高面部表达识别的性能。CFC-SP包含两个核心组成部分,即Coarse-fine连锁网络(CFC)和光滑预测(SP)。对于CFC,它首先将一些类似的情感分组为粗糙的类别,然后使用一个网络进行粗糙但准确的分类。随后,我们进一步利用这些组合情感的额外网络来获得精细的预测。对于SP,它通过捕捉普遍和独特的表达特征,提高模型的识别能力。具体地说,通用特征是指一段时间内面部情绪的一般特征,以及目前具体特征。对Aff-Wild2的实验显示了拟议的CFFC的有效性。我们在第三届“关于纤维活性分析的言论分类挑战”中取得了第三位位置。该代码将在https/BI/PADRID上发布。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月7日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员