Depression is a mental illness that may be harmful to an individual's health. The detection of mental health disorders in the early stages and a precise diagnosis are critical to avoid social, physiological, or psychological side effects. This work analyzes physiological signals to observe if different depressive states have a noticeable impact on the blood volume pulse (BVP) and the heart rate variability (HRV) response. Although typically, HRV features are calculated from biosignals obtained with contact-based sensors such as wearables, we propose instead a novel scheme that directly extracts them from facial videos, just based on visual information, removing the need for any contact-based device. Our solution is based on a pipeline that is able to extract complete remote photoplethysmography signals (rPPG) in a fully unsupervised manner. We use these rPPG signals to calculate over 60 statistical, geometrical, and physiological features that are further used to train several machine learning regressors to recognize different levels of depression. Experiments on two benchmark datasets indicate that this approach offers comparable results to other audiovisual modalities based on voice or facial expression, potentially complementing them. In addition, the results achieved for the proposed method show promising and solid performance that outperforms hand-engineered methods and is comparable to deep learning-based approaches.


翻译:精神抑郁是一种精神疾病,可能对个人的健康有害。在早期发现心理健康紊乱和精确诊断对于避免社会、生理或心理副作用至关重要。这项工作分析生理信号,以观察不同的抑郁状态是否对血液体积脉冲(BVP)和心率变异(HRV)反应产生明显影响。虽然典型地是,通过接触感应器(如磨损感应器)获得的生物信号计算出HRV特征,但我们提议了一个新办法,直接从面部录像中提取这些特征,仅以视觉信息为基础,消除任何接触设备的需求。我们的解决办法基于一条管道,能够以完全不受监督的方式提取出完整的远程光谱镜学信号(rPPG)。我们使用这些RPPPG信号来计算60多个统计、几何和生理特征,这些特征还被进一步用于培训数个机器学习倒退者,以识别不同程度的抑郁症。两个基准数据集的实验表明,这一办法提供了基于声音或面部表达的其他视听模式的可比结果,可能补充了它们。此外,还提出了一种可比较的方法。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月21日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员