In quantitative finance, modeling the volatility structure of underlying assets is a key component in the pricing of options. Rough stochastic volatility models, such as the rough Bergomi model [Bayer, Friz, Gatheral, Quantitative Finance 16(6), 887-904, 2016], seek to fit observed market data based on the observation that the log-realized variance behaves like a fractional Brownian motion with small Hurst parameter, $H < 1/2$, over reasonable timescales. Both time series data of asset prices and option derived price data indicate that $H$ often takes values close to $0.1$ or smaller, i.e. rougher than Brownian Motion. This change greatly improves the fit to time series data of underlying asset prices as well as to option prices while maintaining parsimoniousness. However, the non-Markovian nature of the driving fractional Brownian motion in the rough Bergomi model poses severe challenges for theoretical and numerical analyses as well as for computational practice. While the explicit Euler method is known to converge to the solution of the rough Bergomi model, its strong rate of convergence is only $H$. For a simplified rough Bergomi model, we prove rate $H + 1/2$ for the weak convergence of the Euler method and, surprisingly, in the case of quadratic payoff functions we obtain rate one. Indeed, the problem of weak convergence for rough Bergomi is very subtle; we provide examples demonstrating that the rate of convergence for payoff functions well approximated by second-order polynomials, as weighted by the law of the fractional Brownian motion, may be hard to distinguish from rate one empirically. Our proof relies on Taylor expansions and an affine Markovian representation of the underlying and is further supported by numerical experiments.


翻译:在量化金融中,模拟基础资产波动结构是选项定价的一个关键组成部分。粗略的随机波动模型,如粗糙的Bergomi模型[Bayer、Friz、Columal Finance 16(6)、887-904、2016],试图根据以下观察来调整观察到的市场数据:对日化差异的处理方式,在合理的时间尺度下,其表现方式像一个小块的Brownian运动,带有小赫斯特参数,H美元 < 1/2美元。资产价格和选项衍生物价数据的时间序列数据都表明,美元值通常接近或小于1美元,也就是说,即比布朗图案的更粗略。这一变化极大地改善了资产价格和选择价格的时间序列数据是否适合时间序列数据,同时保持偏差性。然而,在粗略的Bergomi模型中,驱动小块布朗运动的非Markovian性质对理论和数字分析以及计算做法构成了严重挑战。虽然明确的 Euler 方法表明,其价值往往接近于硬度模型的解决方案的解决方案,但是其强劲的递缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩缩略的汇率则仅以1美元计算。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
【2020新书】Python文本分析,104页pdf
专知会员服务
98+阅读 · 2020年12月23日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年6月30日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
【2020新书】Python文本分析,104页pdf
专知会员服务
98+阅读 · 2020年12月23日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员