This paper tackles the 3D object detection problem, which is of vital importance for applications such as autonomous driving. Our framework uses a Machine Learning (ML) pipeline on a combination of monocular camera and LiDAR data to detect vehicles in the surrounding 3D space of a moving platform. It uses frustum region proposals generated by State-Of-The-Art (SOTA) 2D object detectors to segment LiDAR point clouds into point clusters which represent potentially individual objects. We evaluate the performance of classical ML algorithms as part of an holistic pipeline for estimating the parameters of 3D bounding boxes which surround the vehicles around the moving platform. Our results demonstrate an efficient and accurate inference on a validation set, achieving an overall accuracy of 87.1%.
翻译:本文处理3D物体探测问题,这对于自主驾驶等应用至关重要。我们的框架使用单筒照相机和LiDAR数据相结合的机器学习(ML)管道,在移动平台周围的3D空间探测车辆。它使用“国家-艺术”(SOTA)2D物体探测器”生成的丰度区域建议,将LIDAR点云分解成代表潜在单个物体的点群。我们评估古典ML算法的性能,作为估算围绕移动平台的车辆的3D捆绑箱参数的整体管道的一部分。我们的结果显示,对一个验证集进行了有效和准确的推断,总精确度达到87.1%。