The generative adversarial networks (GANs) have recently been applied to estimating the distribution of independent and identically distributed data, and got excellent performances. In this paper, we use the blocking technique to demonstrate the effectiveness of GANs for estimating the distribution of stationary time series. Theoretically, we obtain a non-asymptotic error bound for the Deep Neural Network (DNN)-based GANs estimator for the stationary distribution of the time series. Based on our theoretical analysis, we put forward an algorithm for detecting the change-point in time series. We simulate in our first experiment a stationary time series by the multivariate autoregressive model to test our GAN estimator, while the second experiment is to use our proposed algorithm to detect the change-point in a time series sequence. Both perform very well. The third experiment is to use our GAN estimator to learn the distribution of a real financial time series data, which is not stationary, we can see from the experiment results that our estimator cannot match the distribution of the time series very well but give the right changing tendency.
翻译:最近,基因对抗网络(GANs)被用于估算独立和相同分布数据的分布,并取得了出色的性能。在本文中,我们使用阻塞技术来展示GANs在估计固定时间序列分布方面的有效性。理论上,我们获得了一个非非消磨性错误,为基于深神经网络(DNN)的GANs测算器固定分布时间序列。根据我们的理论分析,我们提出了一个算法,用于探测时间序列中的变化点。我们在第一次实验中用多变量自动递增模型模拟一个固定时间序列,以测试我们的GAN测算器,而第二个实验则是使用我们提议的算法在时间序列序列序列中探测变化点。两者都表现得很好。第三个实验是利用我们的GAN测算器学习真实财务时间序列数据的分布,这些数据不是固定性的,我们从实验结果中可以看到,我们的测算器无法与时间序列的分布完全匹配,但提供了正确的变化趋势。