StyleGAN has shown strong potential for disentangled semantic control, thanks to its special design of multi-layer intermediate latent variables. However, existing semantic discovery methods on StyleGAN rely on manual selection of modified latent layers to obtain satisfactory manipulation results, which is tedious and demanding. In this paper, we propose a model that automates this process and achieves state-of-the-art semantic discovery performance. The model consists of an attention-equipped navigator module and losses contrasting deep-feature changes. We propose two model variants, with one contrasting samples in a binary manner, and another one contrasting samples with learned prototype variation patterns. The proposed losses are defined with pretrained deep features, based on our assumption that the features can implicitly reveal the desired semantic structure including consistency and orthogonality. Additionally, we design two metrics to quantitatively evaluate the performance of semantic discovery methods on FFHQ dataset, and also show that disentangled representations can be derived via a simple training process. Experimentally, our models can obtain state-of-the-art semantic discovery results without relying on latent layer-wise manual selection, and these discovered semantics can be used to manipulate real-world images.
翻译:StyleGAN 显示了解开语义控制的巨大潜力, 因为它对多层中间潜伏变量的特殊设计。 但是, StyleGAN 上现有的语义发现方法依赖于人工选择修改过的潜层以获得令人满意的操纵结果, 这是一种乏味和苛刻的操作结果。 在本文中, 我们提出了一个模型, 将这一过程自动化, 并实现最先进的语义发现性能。 模型包含一个备受关注的导航器模块, 以及与深度变化相对照的损失 。 我们提出了两个模型变量, 一个是二进制的对比样本, 另一个是具有学习过的原型变异模式的对比样本。 提议的损失是用事先经过训练的深层特征来定义的。 我们的假设是, 这些特征可以隐含地显示想要的语义结构结构, 包括一致性和正统性。 此外, 我们设计了两个标准, 对 定量评估 FFHQ 数据集 的语义发现方法的性能, 并表明不相交错的表达方式可以通过简单的培训过程来得出。 实验性, 我们的模型可以获取州- art- se- am- manticlection- movicaltionaltional diverstional digrationaltionaltionaltionaltion digradududududuction 。