Solving high dimensional optimal control problems and corresponding Hamilton-Jacobi PDEs are important but challenging problems in control engineering. In this paper, we propose two abstract neural network architectures which respectively represent the value function and the state feedback characterisation of the optimal control for certain class of high dimensional optimal control problems. We provide the mathematical analysis for the two abstract architectures. We also show several numerical results computed using the deep neural network implementations of these abstract architectures. This work paves the way to leverage efficient dedicated hardware designed for neural networks to solve high dimensional optimal control problems and Hamilton-Jacobi PDEs.
翻译:解决高维最佳控制问题和相应的汉密尔顿-Jacobi PDE是重要但具有挑战性的控制工程问题。 在本文中,我们提出了两个抽象的神经网络结构,分别代表了某些高维最佳控制问题的价值功能和最佳控制状态的反馈特性。我们为这两个抽象结构提供了数学分析。我们还展示了利用这些抽象结构的深层神经网络实施而计算的若干数字结果。这项工作为利用为神经网络设计的高效专用硬件解决高维最佳控制问题和汉密尔顿-贾科比 PDEs铺平了道路。