Convolutional neural networks (CNNs) have developed to become powerful models for various computer vision tasks ranging from object detection to semantic segmentation. However, most of state-of-the-art CNNs can not be deployed directly on edge devices such as smartphones and drones, which need low latency under limited power and memory bandwidth. One popular, straightforward approach to compressing CNNs is network slimming, which imposes $\ell_1$ regularization on the channel-associated scaling factors via the batch normalization layers during training. Network slimming thereby identifies insignificant channels that can be pruned for inference. In this paper, we propose replacing the $\ell_1$ penalty with an alternative sparse, nonconvex penalty in order to yield a more compressed and/or accurate CNN architecture. We investigate $\ell_p (0 < p < 1)$, transformed $\ell_1$ (T$\ell_1$), minimax concave penalty (MCP), and smoothly clipped absolute deviation (SCAD) due to their recent successes and popularity in solving sparse optimization problems, such as compressed sensing and variable selection. We demonstrate the effectiveness of network slimming with nonconvex penalties on VGGNet, Densenet, and Resnet on standard image classification datasets. Based on the numerical experiments, T$\ell_1$ preserves model accuracy against channel pruning, $\ell_{1/2, 3/4}$ yield better compressed models with similar accuracies after retraining as $\ell_1$, and MCP and SCAD provide more accurate models after retraining with similar compression as $\ell_1$. Network slimming with T$\ell_1$ regularization also outperforms the latest Bayesian modification of network slimming in compressing a CNN architecture in terms of memory storage while preserving its model accuracy after channel pruning.


翻译:电磁神经网络(CNNs)已经发展成为各种计算机视野任务(从物体探测到语义分割等)的强大模型。 但是,大多数最先进的CNN不能直接部署在边缘设备上,例如智能手机和无人机,这些设备在有限的电力和记忆带带下需要较低的延缓度。 压缩CNN的一个流行、直截了当的方法是网络瘦化,这通过批次正常化层对频道相关比例因素施加了1美元/ell_1美元正规化。 网络微缩,从而找出了可用于推断的微小渠道。 在本文中,我们提议用一种稀释、非精密的罚款取代$_1美元罚款,以产生更压缩和/或准确的CNN架构。 我们调查$_ell_p (0 p < p < 1), 将1美元(tell_1美元) 调转为直径直径, 以模型调分解(MCP) 和平稳的绝对偏差(SSCD), 原因是它们最近成功且对精细的精度优化优化优化优化优化优化优化优化优化优化的图像问题,例如压缩和存储网络的存储和变现和变现。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Opencv+TF-Slim实现图像分类及深度特征提取
极市平台
16+阅读 · 2019年8月19日
图像分类论文与代码大列表
专知
6+阅读 · 2019年2月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
20+阅读 · 2021年2月28日
Slimmable Generative Adversarial Networks
Arxiv
3+阅读 · 2020年12月10日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
Opencv+TF-Slim实现图像分类及深度特征提取
极市平台
16+阅读 · 2019年8月19日
图像分类论文与代码大列表
专知
6+阅读 · 2019年2月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员