In this letter, we propose a model identification method via hyperparameter optimization (MIHO). Our method is able to identify the parameters of the parametric models in a data-driven manner. We utilize MIHO for the dynamics parameters of the AV-21, the full-scaled autonomous race vehicle, and integrate them into our model-based planning and control systems. In experiments, the models with the optimized parameters demonstrate the generalization ability of the vehicle dynamics model. We further conduct extensive field tests to validate our model-based system. The tests show that our race systems leverage the learned model dynamics well and successfully perform obstacle avoidance and high-speed driving over $200 km/h$ at the Indianapolis Motor Speedway and Las Vegas Motor Speedway. The source code for MIHO and videos of the tests are available at https://github.com/hynkis/MIHO.
翻译:在这封信中,我们提出通过超参数优化(MIHO)的示范识别方法。我们的方法能够以数据驱动的方式确定参数模型的参数。我们用MIHO来测量AV-21的动态参数,即全尺寸自主种族车辆的动态参数,并将其纳入我们的基于模型的规划和控制系统。在实验中,带有优化参数的模型显示了车辆动态模型的一般化能力。我们进一步进行了广泛的实地测试,以验证我们的基于模型的系统。测试表明,我们的种族系统充分利用了所学的模型动态,成功地在印第安纳波利斯高速高速公路和拉斯维加斯高速高速公路避免障碍和高速驾驶超过200公里/小时。MIHO的源代码和测试视频见https://github.com/hynkis/MIHO。