We exploit analogies between first-order algorithms for constrained optimization and non-smooth dynamical systems to design a new class of accelerated first-order algorithms for constrained optimization. Unlike Frank-Wolfe or projected gradients, these algorithms avoid optimization over the entire feasible set at each iteration. We prove convergence to stationary points even in a nonconvex setting and we derive rates for the convex setting. An important property of these algorithms is that constraints are expressed in terms of velocities instead of positions, which naturally leads to sparse, local and convex approximations of the feasible set (even if the feasible set is nonconvex). Thus, the complexity tends to grow mildly in the number of decision variables and in the number of constraints, which makes the algorithms suitable for machine learning applications. We apply our algorithms to a compressed sensing and a sparse regression problem, showing that we can treat nonconvex $\ell^p$ constraints ($p<1$) efficiently, while recovering state-of-the-art performance for $p=1$.
翻译:我们利用限制优化的第一阶算法和非移动动态系统之间的模拟算法来设计新的一类限制优化的加速第一阶算法。 与Frank-Wolfe或预测梯度不同, 这些算法避免了对每次迭代的全部可行设置的优化。 我们证明即使在非电流设置中也与固定点趋同,并且我们得出对锥形设置的速率。 这些算法的一个重要特性是用速度而不是位置来表示制约因素,这自然导致对可行集的快速、本地和锥形近似(即使可行组是非convex )。 因此,在决定变量的数量和制约数量方面,复杂性往往略有增加,使得这些算法适合于机器学习应用。 我们用我们的算法处理压缩感应和微小的回归问题, 表明我们可以有效地处理非convex $\ ell ⁇ p$的制约( $ < 1美元), 同时恢复美元=1的状态性能。