Web-crawled datasets have enabled remarkable generalization capabilities in recent image-text models such as CLIP (Contrastive Language-Image pre-training) or Flamingo, but little is known about the dataset creation processes. In this work, we introduce a testbed of six publicly available data sources - YFCC, LAION, Conceptual Captions, WIT, RedCaps, Shutterstock - to investigate how pre-training distributions induce robustness in CLIP. We find that the performance of the pre-training data varies substantially across distribution shifts, with no single data source dominating. Moreover, we systematically study the interactions between these data sources and find that combining multiple sources does not necessarily yield better models, but rather dilutes the robustness of the best individual data source. We complement our empirical findings with theoretical insights from a simple setting, where combining the training data also results in diluted robustness. In addition, our theoretical model provides a candidate explanation for the success of the CLIP-based data filtering technique recently employed in the LAION dataset. Overall our results demonstrate that simply gathering a large amount of data from the web is not the most effective way to build a pre-training dataset for robust generalization, necessitating further study into dataset design.
翻译:网络拉动的数据集使最近的图像文本模型,如CLIP(培训前语言图像控制)或Flamingo等图像文本模型的显著普及能力得以实现,但对于数据集创建过程却鲜为人知。在这项工作中,我们引入了6个公开数据源的测试台,即YFCC、LAION、概念说明、WIT、RedCaps、Shutterstock等,以调查培训前分发如何在CLIP中产生稳健性。此外,我们发现,培训前数据的数据在分布变化中的表现差异很大,没有单一的数据源占主导地位。此外,我们系统地研究这些数据源之间的相互作用,发现将多个来源结合起来不一定产生更好的模型,而是淡化了最佳个人数据源的稳健性。我们用简单环境的理论洞察来补充我们的经验结论,将培训数据合并在一起,也会削弱稳健性。此外,我们的理论模型为基于CLIP的数据过滤技术的成功提供了候选解释,最近在LION数据集集中使用的成功性技术。我们的总体结果表明,仅仅收集大量稳健的数据,而不是从LAION总设计网络进行进一步的数据化。