The success of neural network embeddings has entailed a renewed interest in using knowledge graphs for a wide variety of machine learning and information retrieval tasks. In particular, current recommendation methods based on graph embeddings have shown state-of-the-art performance. These methods commonly encode latent rating patterns and content features. Different from previous work, in this paper, we propose to exploit embeddings extracted from graphs that combine information from ratings and aspect-based opinions expressed in textual reviews. We then adapt and evaluate state-of-the-art graph embedding techniques over graphs generated from Amazon and Yelp reviews on six domains, outperforming baseline recommenders. Our approach has the advantage of providing explanations which leverage aspect-based opinions given by users about recommended items. Furthermore, we also provide examples of the applicability of recommendations utilizing aspect opinions as explanations in a visualization dashboard, which allows obtaining information about the most and least liked aspects of similar users obtained from the embeddings of an input graph.
翻译:神经网络嵌入的成功意味着人们重新有兴趣使用知识图表进行各种机器学习和信息检索任务。特别是,目前基于图形嵌入的建议方法显示了最新业绩。这些方法通常编码潜在的评级模式和内容特征。与以前的工作不同,我们在本文中提议利用从图表中提取的嵌入,这些图中汇集了在文本审查中表达的评级和基于方面的意见。然后,我们调整和评价了在亚马逊和耶尔普审查中生成的6个域的图表中的最新图形嵌入技术,优于业绩基线建议者。我们的方法的优点是提供解释,利用用户对推荐项目提出的基于方面的意见。此外,我们还提供了一些实例,说明建议是否适用,利用侧面意见作为视觉化仪表板的解释,从而获得关于从投入图表嵌入的图表中获取的类似用户最不喜欢的方面的信息。