项目名称: 高指数晶面结构贵金属纳米颗粒超晶格的模板辅助自组装与光学性能

项目编号: No.21501141

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 杨建辉

作者单位: 西北大学

项目金额: 20万元

中文摘要: 高指数晶面结构纳米颗粒超晶格的表面具有周期性的粗糙度、高浓度的低配位纳米颗粒以及手性扭结状纳米颗粒,在表面增强拉曼散射光谱、催化和手性光学器件等方面具有潜在的应用价值。本项目拟通过液相合成的方法制备单分散的尺寸和结晶度可控的贵金属金、银、金-银核壳和银/金合金纳米颗粒,以及尺寸和晶型可控的钴纳米颗粒。通过模板辅助的自组装过程可控构筑高指数晶面结构的贵金属纳米颗粒超晶格并研究其表面增强拉曼散射光谱效应。优化遴选出对生物医学、医药、农药和爆炸物分子具有优良拉曼增强效果的高指数晶面结构的贵金属纳米颗粒超晶格。本项研究将进一步促进纳米颗粒超晶格在催化、功能器件、光电子和生物传感器领域内的应用。

中文关键词: 贵金属;纳米颗粒超晶格;高指数晶面;模板辅助自组装;表面增强拉曼散射光谱

英文摘要: Nanoparticle superlattices with high-index planes have periodic roughness, high-density low coordination nanoparticles and chiral kinked nanoparticles on their surfaces, and have potential applications in surface-enhanced Raman scattering (SERS), catalysis and chiral optical device etc. The project propose to prepare monodispersed noble metallic Au, Ag, Au-Ag core shell and Ag/Au alloy nanoparticles with controllable size and nanocrystallinity, also Co nanopartciles with controllable size and crystal structure by the liquid-phase synthesis method. Noble metallic nanoparticle superlattices with high-index planes are controllably constructed by the template-assisted self-assembly process and the effects of SERS on their surfaces are studied. The nanoparticle superlattices are optimized and selected, which show excellent Raman enhancement effects to biomedical, pharmaceutical, pesticide and explosives molecules. The current research will further facilitate the applications of the nanoparticle superlattices in catalysis, functional device, optoelectronic, and biosensing.

英文关键词: noble metal;nanoparticle superlattice;high-index plane;template-assisted self-assembly;surface-enhanced Raman scattering

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
27+阅读 · 2021年10月6日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
28+阅读 · 2021年10月1日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
小贴士
相关主题
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
27+阅读 · 2021年10月6日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员