Embedding-based entity alignment (EEA) has recently received great attention. Despite significant performance improvement, few efforts have been paid to facilitate understanding of EEA methods. Most existing studies rest on the assumption that a small number of pre-aligned entities can serve as anchors connecting the embedding spaces of two KGs. Nevertheless, no one investigates the rationality of such an assumption. To fill the research gap, we define a typical paradigm abstracted from existing EEA methods and analyze how the embedding discrepancy between two potentially aligned entities is implicitly bounded by a predefined margin in the scoring function. Further, we find that such a bound cannot guarantee to be tight enough for alignment learning. We mitigate this problem by proposing a new approach, named NeoEA, to explicitly learn KG-invariant and principled entity embeddings. In this sense, an EEA model not only pursues the closeness of aligned entities based on geometric distance, but also aligns the neural ontologies of two KGs by eliminating the discrepancy in embedding distribution and underlying ontology knowledge. Our experiments demonstrate consistent and significant improvement in performance against the best-performing EEA methods.


翻译:尽管业绩有了显著改善,但几乎没有作出什么努力来促进对欧洲经济区方法的了解,大多数现有研究所依据的假设是,少数先入为主的实体可以充当连接两个KG嵌入空间的锚点。然而,没有人调查这种假设的合理性。为了填补研究差距,我们从现有的EEA方法中确定了一种典型的范式,并分析了两个可能合并的实体之间的嵌入差异如何被评分中预先确定的差幅所隐含起来。此外,我们发现,这种差幅无法保证足以保证对准学习具有足够紧凑性。我们提出一个新的办法,即名为NeoEA,以明确学习KG-不轨和有原则的实体嵌入点。从这个意义上说,EEA模式不仅追求基于几何距离的一致实体的密切性,而且还通过消除嵌入分布和基础学知识方面的差异来调整两个KG的神经学的特征。我们的实验表明,与最佳表现的EEA方法相比,在业绩方面有一贯和显著的改进。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Hike: A Hybrid Human-Machine Method for Entity Alignment
机器学习研究会
6+阅读 · 2018年1月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
3+阅读 · 2019年3月26日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
论文浅尝 | Hike: A Hybrid Human-Machine Method for Entity Alignment
机器学习研究会
6+阅读 · 2018年1月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员