Power allocation in spectrum sharing systems is challenging due to excessive interference that the secondary system could impose on the primary system. Therefore, an interference threshold constraint is considered to regulate the secondary system's activity. However, the primary receivers should measure the interference and inform the secondary users accordingly. These cause design complexities, e.g., due to transceiver's hardware impairments, and impose a substantial signaling overhead. We set our main goal to mitigate these requirements in order to make the spectrum sharing systems practically feasible. To cope with the lack of a model we develop a coexisting deep reinforcement learning approach for continuous power allocation in both systems. Importantly, via our solution, the two systems allocate power merely based on geographical location of their users. Moreover, the inter-system signaling requirement is reduced to exchanging only the number of primary users that their QoS requirements are violated. We observe that compared to a centralized agent that allocates power based on full (accurate) channel information, our solution is more robust and strictly guarantees QoS requirements of the primary users. This implies that both systems can operate simultaneously with almost-zero inter-system signaling overhead.


翻译:由于二级系统可能对初级系统造成过度干扰,在频谱共享系统中的权力分配具有挑战性,因此,在监管二级系统的活动时,可以考虑干预门槛限制,但初级接收器应测量干扰,并相应告知二级用户。这造成了设计的复杂性,例如,由于收发报机硬件受损,造成设计的复杂性,并造成大量的间接信号。我们设定了减少这些要求的主要目标,以便使频谱共享系统切实可行。为了应对缺乏一种模式,我们为两个系统的持续电力分配开发了一种共存的深层强化学习方法。重要的是,通过我们的解决方案,两个系统仅根据用户的地理位置分配权力。此外,系统间信号要求被缩减为仅交换其QOS要求被违反的初级用户数目。我们注意到,与基于充分(准确的)频道信息分配权力的中央代理相比,我们的解决办法更加有力和严格地保证了主要用户的QOS要求。这意味着,两个系统可以同时运行,与几乎为零的系统间间接信号。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
92+阅读 · 2020年2月28日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员