Lots of neural network architectures have been proposed to deal with learning tasks on graph-structured data. However, most of these models concentrate on only node features during the learning process. The edge features, which usually play a similarly important role as the nodes, are often ignored or simplified by these models. In this paper, we present edge-featured graph attention networks, namely EGATs, to extend the use of graph neural networks to those tasks learning on graphs with both node and edge features. These models can be regarded as extensions of graph attention networks (GATs). By reforming the model structure and the learning process, the new models can accept node and edge features as inputs, incorporate the edge information into feature representations, and iterate both node and edge features in a parallel but mutual way. The results demonstrate that our work is highly competitive against other node classification approaches, and can be well applied in edge-featured graph learning tasks.


翻译:提出了许多神经网络架构,以处理图表结构数据方面的学习任务。 但是,这些模型大多只集中在学习过程中的节点特征上。 边缘特征通常与节点具有相似的重要作用,但往往被这些模型忽略或简化。 在本文中,我们展示了边点图形关注网络,即EGATs, 将图形神经网络的使用扩大到在具有节点和边缘特征的图表上学习的任务。这些模型可以被视为图形关注网络(GATs)的扩展。通过改革模型结构和学习过程,新模型可以接受节点和边点特征作为投入,将边缘信息纳入特征演示,并平行地、相互地同时将节点和边点特征加以扩展。结果显示,我们的工作与其他节点分类方法相比,具有高度竞争力,并且可以很好地应用于边缘的图形学习任务。

1
下载
关闭预览

相关内容

图注意力网络(Graph Attention Network,GAT),它通过注意力机制(Attention Mechanism)来对邻居节点做聚合操作,实现了对不同邻居权重的自适应分配,从而大大提高了图神经网络模型的表达能力。
专知会员服务
54+阅读 · 2020年11月3日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
112+阅读 · 2019年11月25日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
15+阅读 · 2020年2月5日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关VIP内容
相关论文
Arxiv
3+阅读 · 2020年4月29日
Arxiv
15+阅读 · 2020年2月5日
Signed Graph Attention Networks
Arxiv
7+阅读 · 2019年9月5日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员