The $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-additive codes are subgroups of $\mathbb{Z}_p^{\alpha_1} \times \mathbb{Z}_{p^2}^{\alpha_2} \times \cdots \times \mathbb{Z}_{p^s}^{\alpha_s}$, and can be seen as linear codes over $\mathbb{Z}_p$ when $\alpha_i=0$ for all $i \in \{2,\dots, s\}$, a $\mathbb{Z}_{p^s}$-additive code when $\alpha_i=0$ for all $i \in \{1,\dots, s-1\}$ , or a $\mathbb{Z}_p\mathbb{Z}_{p^2}$-additive code when $s=2$, or $\mathbb{Z}_2\mathbb{Z}_4$-additive codes when $p=2$ and $s=2$. A $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-linear generalized Hadamard (GH) code is a GH code over $\mathbb{Z}_p$ which is the Gray map image of a $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-additive code. In this paper, we generalize some known results for $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-linear GH codes with $p$ prime and $s\geq 2$. First, we give a recursive construction of $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots \mathbb{Z}_{p^s}$-additive GH codes of type $(\alpha_1,\dots,\alpha_s;t_1,\dots,t_s)$ with $t_1\geq 1, t_2,\dots,t_{s-1}\geq 0$, and $t_s\geq1$. Then, we show for which types the corresponding $\mathbb{Z}_p\mathbb{Z}_{p^2}\dots\mathbb{Z}_{p^s}$-linear GH codes are nonlinear over $\mathbb{Z}_p$. We also compute the kernel and its dimension whenever they are nonlinear.


翻译:$\mathb\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以被看成直线代码 $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
46+阅读 · 2020年10月5日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月17日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
VIP会员
相关VIP内容
专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
46+阅读 · 2020年10月5日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员