Edge computing offers the distinct advantage of harnessing compute capabilities on resources located at the edge of the network to run workloads of relatively weak user devices. This is achieved by offloading computationally intensive workloads, such as deep learning from user devices to the edge. Using the edge reduces the overall communication latency of applications as workloads can be processed closer to where data is generated on user devices rather than sending them to geographically distant clouds. Specialised hardware accelerators, such as Graphics Processing Units (GPUs) available in the cloud-edge network can enhance the performance of computationally intensive workloads that are offloaded from devices on to the edge. The underlying approach required to facilitate this is virtualization of GPUs. This paper therefore sets out to investigate the potential of GPU accelerator virtualization to improve the performance of deep learning workloads in a cloud-edge environment. The AVEC accelerator virtualization framework is proposed that incurs minimum overheads and requires no source-code modification of the workload. AVEC intercepts local calls to a GPU on a device and forwards them to an edge resource seamlessly. The feasibility of AVEC is demonstrated on a real-world application, namely OpenPose using the Caffe deep learning library. It is observed that on a lab-based experimental test-bed AVEC delivers up to 7.48x speedup despite communication overheads incurred due to data transfers.
翻译:边缘计算提供了利用网络边缘资源计算能力以运行相对薄弱的用户设备工作量的独特优势。 这是通过卸载从用户设备到边缘的深度学习等计算密集型工作量实现的。 使用边缘可以降低应用程序的总体通信延迟度, 因为工作量可以更接近于在用户设备上生成数据的地点处理, 而不是将其送至遥远的云层。 特殊硬件加速器, 如在云端网络中可用的图形处理器( GPUs) 能够提高从设备卸载到边缘的计算密集型工作量的性能。 便利这项工作的基本方法是将GPUs从用户设备虚拟化。 因此, 使用边缘边边端的边端应用器可以调查GPUs加速器的潜力, 以便改进在冷层环境中生成数据的深度学习工作量的性能。 AVEC 加速器加速器虚拟化框架建议采用最低限度的间接费用, 不需要对工作量进行源码的修改。 AVEC 截取本地的GPP和前方的电话呼叫, 便利GPPSevels, 测试A- develop laftalal laftalal laftal laftal a laft laft laft