Edge computing offers the distinct advantage of harnessing compute capabilities on resources located at the edge of the network to run workloads of relatively weak user devices. This is achieved by offloading computationally intensive workloads, such as deep learning from user devices to the edge. Using the edge reduces the overall communication latency of applications as workloads can be processed closer to where data is generated on user devices rather than sending them to geographically distant clouds. Specialised hardware accelerators, such as Graphics Processing Units (GPUs) available in the cloud-edge network can enhance the performance of computationally intensive workloads that are offloaded from devices on to the edge. The underlying approach required to facilitate this is virtualization of GPUs. This paper therefore sets out to investigate the potential of GPU accelerator virtualization to improve the performance of deep learning workloads in a cloud-edge environment. The AVEC accelerator virtualization framework is proposed that incurs minimum overheads and requires no source-code modification of the workload. AVEC intercepts local calls to a GPU on a device and forwards them to an edge resource seamlessly. The feasibility of AVEC is demonstrated on a real-world application, namely OpenPose using the Caffe deep learning library. It is observed that on a lab-based experimental test-bed AVEC delivers up to 7.48x speedup despite communication overheads incurred due to data transfers.


翻译:边缘计算提供了利用网络边缘资源计算能力以运行相对薄弱的用户设备工作量的独特优势。 这是通过卸载从用户设备到边缘的深度学习等计算密集型工作量实现的。 使用边缘可以降低应用程序的总体通信延迟度, 因为工作量可以更接近于在用户设备上生成数据的地点处理, 而不是将其送至遥远的云层。 特殊硬件加速器, 如在云端网络中可用的图形处理器( GPUs) 能够提高从设备卸载到边缘的计算密集型工作量的性能。 便利这项工作的基本方法是将GPUs从用户设备虚拟化。 因此, 使用边缘边边端的边端应用器可以调查GPUs加速器的潜力, 以便改进在冷层环境中生成数据的深度学习工作量的性能。 AVEC 加速器加速器虚拟化框架建议采用最低限度的间接费用, 不需要对工作量进行源码的修改。 AVEC 截取本地的GPP和前方的电话呼叫, 便利GPPSevels, 测试A- develop laftalal laftalal laftal laftal a laft laft laft

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
69+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
谷歌足球游戏环境使用介绍
CreateAMind
31+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
25+阅读 · 2018年11月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
31+阅读 · 2019年6月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
25+阅读 · 2018年11月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员