While neural architecture search methods have been successful in previous years and led to new state-of-the-art performance on various problems, they have also been criticized for being unstable, being highly sensitive with respect to their hyperparameters, and often not performing better than random search. To shed some light on this issue, we discuss some practical considerations that help improve the stability, efficiency and overall performance.


翻译:虽然神经结构搜索方法在过去几年中取得了成功,并导致在各种问题上出现了新的最新表现,但人们也批评这些方法不稳定,对超参数高度敏感,而且往往没有比随机搜索更好的表现。 为了对这一问题有所了解,我们讨论了一些有助于改善稳定性、效率和总体绩效的实际考虑。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
114+阅读 · 2021年4月17日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关论文
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Top
微信扫码咨询专知VIP会员