Motion transfer aims to transfer the motion of a driving video to a source image. When there are considerable differences between object in the driving video and that in the source image, traditional single domain motion transfer approaches often produce notable artifacts; for example, the synthesized image may fail to preserve the human shape of the source image (cf . Fig. 1 (a)). To address this issue, in this work, we propose a Motion and Appearance Adaptation (MAA) approach for cross-domain motion transfer, in which we regularize the object in the synthesized image to capture the motion of the object in the driving frame, while still preserving the shape and appearance of the object in the source image. On one hand, considering the object shapes of the synthesized image and the driving frame might be different, we design a shape-invariant motion adaptation module that enforces the consistency of the angles of object parts in two images to capture the motion information. On the other hand, we introduce a structure-guided appearance consistency module designed to regularize the similarity between the corresponding patches of the synthesized image and the source image without affecting the learned motion in the synthesized image. Our proposed MAA model can be trained in an end-to-end manner with a cyclic reconstruction loss, and ultimately produces a satisfactory motion transfer result (cf . Fig. 1 (b)). We conduct extensive experiments on human dancing dataset Mixamo-Video to Fashion-Video and human face dataset Vox-Celeb to Cufs; on both of these, our MAA model outperforms existing methods both quantitatively and qualitatively.
翻译:移动传输的目的是将驱动视频的动作转移到源图像中。当驱动视频中对象之间有很大差异,而在源图像中,传统单一域移动传输方法往往产生显著的文物;例如,合成图像可能无法保存源图像的人形(参见Fig.1(a)) 。为了解决这一问题,我们在此工作中提议了跨场移动移动的动画和外观适应(MAA)方法,在这个方法中,我们规范了合成图像中的对象,以捕捉驱动框中对象的动作,同时仍然保存源图像中对象的形状和外观。一方面,考虑到合成图像的物体形状和驱动框架可能不同;例如,合成图像可能无法保存源图像的人形形状(参见Fig. 1(a) 。为了测量两个图像中对象部分角度的一致性,我们建议了跨场运动信息。另一方面,我们引入了一个结构指导的外观一致性模块,目的是将合成图像的对应部分与源图像的底部部分统一起来,同时保存源图像的形状和外观的外观。一方面,考虑到合成图像的合成图象的形状形状形状和演化过程,最终将产生一个完整的模型。我们所学的法式的模型,可以产生一个完整的模型。我们模拟的模型,在模拟的模型中,可以产生一个完整的模型到一个完整的模型到一个完整的模型到一个完整的模型到一个完整的模型。