Many computational algorithms applied to geometry operate on discrete representations of shape. It is sometimes necessary to first simplify, or coarsen, representations found in modern datasets for practicable or expedited processing. The utility of a coarsening algorithm depends on both, the choice of representation as well as the specific processing algorithm or operator. e.g. simulation using the Finite Element Method, calculating Betti numbers, etc. We propose a novel method that can coarsen triangle meshes, tetrahedral meshes and simplicial complexes. Our method allows controllable preservation of salient features from the high-resolution geometry and can therefore be customized to different applications. Salient properties are typically captured by local shape descriptors via linear differential operators -- variants of Laplacians. Eigenvectors of their discretized matrices yield a useful spectral domain for geometry processing (akin to the famous Fourier spectrum which uses eigenfunctions of the derivative operator). Existing methods for spectrum-preserving coarsening use zero-dimensional discretizations of Laplacian operators (defined on vertices). We propose a generalized spectral coarsening method that considers multiple Laplacian operators defined in different dimensionalities in tandem. Our simple algorithm greedily decides the order of contractions of simplices based on a quality function per simplex. The quality function quantifies the error due to removal of that simplex on a chosen band within the spectrum of the coarsened geometry.


翻译:用于几何的许多计算算法在形状的离散表达式上运行。 有时首先需要简化, 或coarsen, 现代数据集中为实际或快速处理而找到的显性表示式。 粗化算法的有用性取决于两种情况: 代表制的选择以及具体的处理算法或操作者, 例如, 使用 Finite Element 法模拟, 计算贝蒂数字等。 我们建议一种新型方法, 它可以腐蚀三角模组、 四合体和简化复合体。 我们的方法允许首先对高分辨率几何的显性特征进行可控制的保存, 从而可以对不同的应用程序进行定制。 粗化算法的特性通常通过线性差操作者( Laplacecian 变量的变式) 被本地形状描述解析器所捕捉到。 离散矩阵的精度使光谱处理产生有用的光谱域( 类似著名的四更频谱谱谱, 使用衍生操作器的仪形元元元元元。 现有的频谱保存方法, 使用高分辨率分解调调调调调操作器的分解分解分解分解分解特性( 定义于对精度等分解的地段数级质量操作器), 。 我们的平面的平面性平整的平整的平整的平整法,, 的平整的平整的平面的平面的平面的平面的平整法, 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
17+阅读 · 2020年9月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
19+阅读 · 2021年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员