Time series with missing data are signals encountered in important settings for machine learning. Some of the most successful prior approaches for modeling such time series are based on recurrent neural networks that transform the input and previous state to account for the missing observations, and then treat the transformed signal in a standard manner. In this paper, we introduce a single unifying framework, Recursive Input and State Estimation (RISE), for this general approach and reformulate existing models as specific instances of this framework. We then explore additional novel variations within the RISE framework to improve the performance of any instance. We exploit representation learning techniques to learn latent representations of the signals used by RISE instances. We discuss and develop various encoding techniques to learn latent signal representations. We benchmark instances of the framework with various encoding functions on three data imputation datasets, observing that RISE instances always benefit from encoders that learn representations for numerical values from the digits into which they can be decomposed.
翻译:缺少数据的时间序列是在机器学习的重要环境中遇到的信号。在这类时间序列的建模中,一些最成功的先前方法是以经常神经网络为基础的,这些神经网络转换了输入和先前状态,以说明缺失的观测结果,然后以标准的方式处理转换的信号。在本文中,我们为这一总体方法引入了一个单一的统一框架,即“反馈输入和国家估计”(RISE),并将现有模型改编为这一框架的具体实例。然后,我们探索RISE框架内的其他新变异,以改进任何实例的性能。我们利用代表性学习技术来学习RISE实例所使用的信号的潜在表现。我们讨论并开发了各种编码技术,以学习潜在的信号表示方式。我们用三个数据估算数据集来衡量框架的编码功能,我们注意到RISE实例总是从从从从数字中学习数字表达方法的编码中得益。