This paper presents an emotion-regularized conditional variational autoencoder (Emo-CVAE) model for generating emotional conversation responses. In conventional CVAE-based emotional response generation, emotion labels are simply used as additional conditions in prior, posterior and decoder networks. Considering that emotion styles are naturally entangled with semantic contents in the language space, the Emo-CVAE model utilizes emotion labels to regularize the CVAE latent space by introducing an extra emotion prediction network. In the training stage, the estimated latent variables are required to predict the emotion labels and token sequences of the input responses simultaneously. Experimental results show that our Emo-CVAE model can learn a more informative and structured latent space than a conventional CVAE model and output responses with better content and emotion performance than baseline CVAE and sequence-to-sequence (Seq2Seq) models.
翻译:本文介绍了一种情感正规化的有条件变异自动编码器(Emo-CVAE)模式,用于生成情感谈话反应。在常规的以CVAE为基础的情感反应生成中,情感标签仅仅被用作先前、后继和解码网络的额外条件。考虑到情感风格与语言空间的语义内容自然交织在一起,Emo-CVAE模式利用情感标签通过引入额外的情感预测网络使CVAE潜伏空间正规化。在培训阶段,需要估计的潜在变量来同时预测投入反应的情感标签和符号序列。实验结果表明,我们的Emo-CVAE模型可以学习比常规的CVAE模型和输出反应更具内容和情感性能的比CVAE基线和序列到序列模型(Seq2Seq)更好的内容和情感性能更好的、结构化潜在空间。