Framing is a process of emphasizing a certain aspect of an issue over the others, nudging readers or listeners towards different positions on the issue even without making a biased argument. {Here, we propose FrameAxis, a method for characterizing documents by identifying the most relevant semantic axes ("microframes") that are overrepresented in the text using word embedding. Our unsupervised approach can be readily applied to large datasets because it does not require manual annotations. It can also provide nuanced insights by considering a rich set of semantic axes. FrameAxis is designed to quantitatively tease out two important dimensions of how microframes are used in the text. \textit{Microframe bias} captures how biased the text is on a certain microframe, and \textit{microframe intensity} shows how actively a certain microframe is used. Together, they offer a detailed characterization of the text. We demonstrate that microframes with the highest bias and intensity well align with sentiment, topic, and partisan spectrum by applying FrameAxis to multiple datasets from restaurant reviews to political news.} The existing domain knowledge can be incorporated into FrameAxis {by using custom microframes and by using FrameAxis as an iterative exploratory analysis instrument.} Additionally, we propose methods for explaining the results of FrameAxis at the level of individual words and documents. Our method may accelerate scalable and sophisticated computational analyses of framing across disciplines.
翻译:框架轴(FramaAxis) 旨在从数量上取出文本中如何使用微观框架的两个重要方面。\\ textit{Microframe object} 捕捉到文本在某些缩略图框架中的偏差, 和\textit{Micrame strong} 显示某些缩略图是如何被积极使用的。 它们共同提供了对文本的详细描述。 我们通过考虑一套内容丰富的语义轴也可以提供微妙的洞察力。 框架轴(framAxis) 旨在从数量上取出文本中使用微观框架的两种重要方面。\ textit{Microframes) 捕捉到文本在文本中代表过多的语义轴(“Microframes”) 显示文本在某种微缩图框架中的偏差。 它们提供了对文本的详细描述。 我们通过将框架AxicrialA的精密度和强度与情绪、主题和党派频谱相匹配, 通过将框架AxialA 应用于多种数据轴的缩缩缩略图解度分析。