Metrics on Grassmannians have a wide array of applications: machine learning, wireless communication, computer vision, etc. But the available distances between subspaces of distinct dimensions present problems, and the dimensional asymmetry of the subspaces calls for the use of asymmetric metrics. We extend the Fubini-Study metric as an asymmetric angle with useful properties, and whose relations to products of Grassmann and Clifford geometric algebras make it easy to compute. We also describe related angles that provide extra information, and a method to extend other Grassmannian metrics to asymmetric metrics on the full Grassmannian.
翻译:格拉斯曼尼的计量系统有各种各样的应用:机器学习、无线通信、计算机视觉等。 但是,不同维度子空间之间的可用距离存在问题,而子空间的维度不对称要求使用非对称度量度。 我们扩展了富比尼-斯图迪指标,将其作为具有有用特性的不对称角度,其与格拉斯曼和克利福德几何代数仪产品的关系便于计算。 我们还描述了提供额外信息的相关角度,以及将其他格拉斯曼指标扩展至整个格拉斯曼尼人非对称度量度量度的方法。