Complex reasoning problems contain states that vary in the computational cost required to determine a good action plan. Taking advantage of this property, we propose Adaptive Subgoal Search (AdaSubS), a search method that adaptively adjusts the planning horizon. To this end, AdaSubS generates diverse sets of subgoals at different distances. A verification mechanism is employed to filter out unreachable subgoals swiftly, allowing to focus on feasible further subgoals. In this way, AdaSubS benefits from the efficiency of planning with longer subgoals and the fine control with the shorter ones, and thus scales well to difficult planning problems. We show that AdaSubS significantly surpasses hierarchical planning algorithms on three complex reasoning tasks: Sokoban, the Rubik's Cube, and inequality proving benchmark INT.
翻译:复杂的推理问题包含不同的计算成本,以决定良好的行动计划。利用这一特性,我们建议采用适应性子目标搜索(AdaSubS),这是一个适应性调整规划视野的搜索方法。为此,AdaSubS在不同距离生成了不同的子目标。一个核查机制用于迅速筛选无法触及的子目标,以便关注可行的进一步次级目标。这样,AdaSubS从规划效率中获益,利用较长的子目标进行规划,对较短的次级目标进行精细控制,从而缩小规划问题的范围。我们表明,AdaSubS在三个复杂的推理任务上大大超过等级规划算法:Sokoban, Rubik的立方, 和证明不平等是INT的基准。