When robots operate in the real world, they need to handle uncertainties in sensing, acting, and the environment dynamics. Many tasks also require reasoning about long-term consequences of robot decisions. The partially observable Markov decision process (POMDP) offers a principled approach for planning under uncertainty. However, its computational complexity grows exponentially with the planning horizon. We propose to use temporally-extended macro-actions to cut down the effective planning horizon and thus the exponential factor of the complexity. We propose Macro-Action Generator-Critic (MAGIC), an algorithm that learns a macro-action generator using feedback from a planner, and in turn uses the learned macro-actions to condition long-horizon planning. Importantly, the generator is learned to directly maximize the down-stream planning performance. We evaluate MAGIC on several long-term planning tasks, showing that it significantly outperforms planning using primitive actions and hand-crafted macro-actions in both simulation and on a real robot.


翻译:当机器人在现实世界中运作时,他们需要处理在感测、行为和环境动态方面的不确定性。许多任务也需要对机器人决定的长期后果进行推理。部分可见的Markov决策程序(POMDP)提供了一种在不确定情况下进行规划的原则性方法。然而,其计算复杂性随着规划地平线而成倍增长。我们提议使用时间延伸的宏观行动来缩小有效的规划视野,从而缩小复杂性的指数性系数。我们提议了宏观行动发电机-批评(MAGIC),这是一种算法,它利用规划者的反馈来学习宏观行动生成器,而反过来又利用所学的宏观行动来决定长期的模拟和真正的机器人规划条件。重要的是,该生成器学会直接最大限度地提高下游规划绩效。我们在若干长期规划任务中评估了MAGIC,显示它在模拟和真正的机器人中都大大超过使用原始行动和手工制作的宏观行动进行规划的效果。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
最新!Yann Lecun 纽约大学Spring2020深度学习课程,附PPT下载
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
5+阅读 · 2021年2月8日
VIP会员
相关VIP内容
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
最新!Yann Lecun 纽约大学Spring2020深度学习课程,附PPT下载
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员