In the Selective Coloring problem, we are given an integer $k$, a graph $G$, and a partition of $V(G)$ into $p$ parts, and the goal is to decide whether or not we can pick exactly one vertex of each part and obtain a $k$-colorable induced subgraph of $G$. This generalization of Vertex Coloring has only recently begun to be studied by Demange et al. [Theoretical Computer Science, 2014], motivated by scheduling problems on distributed systems, with Guo et al. [TAMC, 2020] discussing the first results on the parameterized complexity of the problem. In this work, we study multiple structural parameterizations for Selective Coloring. We begin by revisiting the many hardness results of Demange et al. and show how they may be used to provide intractability proofs for widely used parameters such as pathwidth, distance to co-cluster, and max leaf number. Afterwards, we present fixed-parameter tractability algorithms when parameterizing by distance to cluster, or under the joint parameterizations treewidth and number of parts, and co-treewidth and number of parts. Our main contribution is a proof that, for every fixed $k \geq 1$, Selective Coloring does not admit a polynomial kernel when jointly parameterized by the vertex cover number and the number of parts, which implies that Multicolored Independent Set does not admit a polynomial kernel under the same parameterization.


翻译:在选择性颜色问题中,我们得到一个整数 $k$,一个图形 $G$,以及一个以美元(G)为单位的分解,目标是决定我们能否选择每个部分的精确顶点,并获得一个以美元为单位的彩色诱导导子图案$G$。Demange 等人最近才开始研究Vertex 色彩的这种概括化,[理论计算机科学,2014年],其动机是分布式系统的调度问题,Guo 等人[TAMC,2020年]讨论参数复杂度的最初结果。在此工作中,我们研究选取每个部分的选取色色色色的多重结构参数。我们首先重新审视Demange 等人的许多硬度结果,并展示如何使用它们为广泛使用的参数提供不可吸引性证明,例如路径宽度、离共聚群的距离和最大叶数。随后,当按离子的距离比较时,或者在联合参数化下,不是以美元为单位的颜色分数, 我们的多色和正值中的每一部分, 我们的每个部分都是以正值为单位。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Yann Lecun 纽约大学《深度学习(PyTorch)》课程(2020)PPT
专知会员服务
179+阅读 · 2020年3月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月18日
Arxiv
0+阅读 · 2021年1月17日
Random and quasi-random designs in group testing
Arxiv
0+阅读 · 2021年1月15日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员