Self-supervised learning (SSL) has become a popular method for generating invariant representations without the need for human annotations. Nonetheless, the desired invariant representation is achieved by utilising prior online transformation functions on the input data. As a result, each SSL framework is customised for a particular data type, e.g., visual data, and further modifications are required if it is used for other dataset types. On the other hand, autoencoder (AE), which is a generic and widely applicable framework, mainly focuses on dimension reduction and is not suited for learning invariant representation. This paper proposes a generic SSL framework based on a constrained self-labelling assignment process that prevents degenerate solutions. Specifically, the prior transformation functions are replaced with a self-transformation mechanism, derived through an unsupervised training process of adversarial training, for imposing invariant representations. Via the self-transformation mechanism, pairs of augmented instances can be generated from the same input data. Finally, a training objective based on contrastive learning is designed by leveraging both the self-labelling assignment and the self-transformation mechanism. Despite the fact that the self-transformation process is very generic, the proposed training strategy outperforms a majority of state-of-the-art representation learning methods based on AE structures. To validate the performance of our method, we conduct experiments on four types of data, namely visual, audio, text, and mass spectrometry data, and compare them in terms of four quantitative metrics. Our comparison results indicate that the proposed method demonstrate robustness and successfully identify patterns within the datasets.


翻译:自我监督的学习(SSL)已成为一种流行的方法,用于生成不需人工说明的变异表达方式。然而,理想的变异表达方式是通过在输入数据上使用先前的在线转换功能来实现的。因此,每个 SSL 框架为某一特定数据类型定制,例如视觉数据,如果用于其他数据集类型,则需要进一步修改。另一方面,自动编码器(AE)是一个通用和广泛适用的框架,主要侧重于尺寸减少,不适于学习变异表达方式。本文提出一个通用的 SSL 框架,其基础是有限的自我标签任务分配过程,防止了退化的解决方案。具体地说,以前的变异功能被一个自变机制所定制,通过未经监督的对抗性培训过程,将它用于其他数据集类型。 自我转换机制,从相同的输入数据数据中生成各种强化实例。最后,一个基于对比学习设计的培训目标,是利用自我标签任务内部的自我标签和比较性质量分配的指定格式,也就是基于我们提出的四种变异性数据结构的自我转换方法, 显示我们提出的四种数据格式的自我转换方法。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
25+阅读 · 2021年3月20日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员