In randomized experiments, linear regression with baseline features can be used to form an estimate of the sample average treatment effect that is asymptotically no less efficient than the treated-minus-control difference in means. Randomization alone provides this "do-no-harm" property, with neither truth of a linear model nor a generative model for the outcomes being required. We present a general calibration step which confers the same no-harm property onto estimators leveraging a broad class of nonlinear models. The process recovers the usual regression-adjusted estimator when ordinary least squares is used, and further provides non-inferior treatment effect estimators using methods such as logistic and Poisson regression. The resulting estimators are non-inferior with respect to both the difference in means estimator and with respect to treatment effect estimators that have not undergone calibration.


翻译:在随机实验中,可使用带有基线特征的线性回归来估计样本平均处理效果,其效率不亚于用处理的负负控制手段的差异。光是随机化本身就提供了这种“不伤害”属性,既非线性模型的真伪,也非所需结果的基因化模型。我们提出了一个一般校准步骤,将同样的无伤害属性授予利用非线性模型大类的估测器。在使用普通最小方形时,这一过程恢复了通常的回归调整估计值,并进一步使用后勤和普瓦森回归等方法提供了非急性治疗效应估计值。由此得出的估计值在手段估计值和未进行校准的治疗效果估计值上都是非致命的。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年2月19日
Arxiv
0+阅读 · 2021年2月19日
Arxiv
0+阅读 · 2021年2月18日
Arxiv
0+阅读 · 2021年2月17日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员