We present a new solver for non-convex trajectory optimization problems that is specialized for robotics applications. CALIPSO, or the Conic Augmented Lagrangian Interior-Point SOlver, combines several strategies for constrained numerical optimization to natively handle second-order cones and complementarity constraints. It reliably solves challenging motion-planning problems that include contact-implicit formulations of impacts and Coulomb friction, thrust limits subject to conic constraints, and state-triggered constraints where general-purpose nonlinear programming solvers like SNOPT and Ipopt fail to converge. Additionally, CALIPSO supports efficient differentiation of solutions with respect to problem data, enabling bi-level optimization applications like auto-tuning of feedback policies. Reliable convergence of the solver is demonstrated on a range of problems from manipulation, locomotion, and aerospace domains. An open-source implementation of this solver is available.
翻译:我们为非混凝土轨道优化问题提供了一个新的解决方案,专门用于机器人应用。 CALIPSO, 或Concied United Lagrangeian Interrial-Point Solver, 将若干限制数字优化的战略结合到本地处理二阶锥体和互补限制。 它可靠地解决了具有挑战性的运动规划问题, 包括影响和库伦摩擦的接触隐含配方和Coulomb摩擦, 受静脉限制的推力限制, 以及国家触发的制约, 诸如 SNOPT 和 Ipopt 等通用非线性非线性编程求解器无法集中。 此外, CALIPSO 支持在问题数据方面有效区分解决方案, 使双级优化应用如反馈政策的自动调整得以实现双级优化应用。 溶解器在操纵、 移动和航空航天领域等一系列问题上的可靠趋同。 该解器的开放源实施是存在的。