Relative camera pose estimation, i.e. estimating the translation and rotation vectors using a pair of images taken in different locations, is an important part of systems in augmented reality and robotics. In this paper, we present an end-to-end relative camera pose estimation network using a siamese architecture that is independent of camera parameters. The network is trained using the Cambridge Landmarks data with four individual scene datasets and a dataset combining the four scenes. To improve generalization, we propose a novel two-stage training that alleviates the need of a hyperparameter to balance the translation and rotation loss scale. The proposed method is compared with one-stage training CNN-based methods such as RPNet and RCPNet and demonstrate that the proposed model improves translation vector estimation by 16.11%, 28.88%, and 52.27% on the Kings College, Old Hospital, and St Marys Church scenes, respectively. For proving texture invariance, we investigate the generalization of the proposed method augmenting the datasets to different scene styles, as ablation studies, using generative adversarial networks. Also, we present a qualitative assessment of epipolar lines of our network predictions and ground truth poses.


翻译:相对的相机显示估计,即使用在不同地点拍摄的一对图像来估计翻译和旋转矢量,是增强现实和机器人系统的一个重要部分。在本文中,我们展示了一个端到端相对的相机显示使用一个独立于相机参数的硅状结构进行估计的网络。这个网络使用剑桥Landmarks数据培训,有四个单独的场景数据集和一个将四场景结合起来的数据集。为了改进概括性,我们提议进行一个新的两阶段培训,以缓解超参数对平衡翻译和旋转损失规模的需要。拟议的方法与一级培训CNN方法(如RPNet和RCPNet)进行比较,并表明拟议的模型将Kings学院、老医院和圣玛丽教堂场景的翻译矢量估计分别提高16.11%、28.88%和52.27%。为了证明文字变异性,我们利用基因化对地面对网络进行定性预测和地面直径直线预测。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
27+阅读 · 2020年12月24日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员